Transcriptional Dynamics Elicited by a Short Pulse of Notch Activation Involves Feed-Forward Regulation by E(spl)/Hes Genes
نویسندگان
چکیده
Dynamic activity of signaling pathways, such as Notch, is vital to achieve correct development and homeostasis. However, most studies assess output many hours or days after initiation of signaling, once the outcome has been consolidated. Here we analyze genome-wide changes in transcript levels, binding of the Notch pathway transcription factor, CSL [Suppressor of Hairless, Su(H), in Drosophila], and RNA Polymerase II (Pol II) immediately following a short pulse of Notch stimulation. A total of 154 genes showed significant differential expression (DE) over time, and their expression profiles stratified into 14 clusters based on the timing, magnitude, and direction of DE. E(spl) genes were the most rapidly upregulated, with Su(H), Pol II, and transcript levels increasing within 5-10 minutes. Other genes had a more delayed response, the timing of which was largely unaffected by more prolonged Notch activation. Neither Su(H) binding nor poised Pol II could fully explain the differences between profiles. Instead, our data indicate that regulatory interactions, driven by the early-responding E(spl)bHLH genes, are required. Proposed cross-regulatory relationships were validated in vivo and in cell culture, supporting the view that feed-forward repression by E(spl)bHLH/Hes shapes the response of late-responding genes. Based on these data, we propose a model in which Hes genes are responsible for co-ordinating the Notch response of a wide spectrum of other targets, explaining the critical functions these key regulators play in many developmental and disease contexts.
منابع مشابه
Transcriptional Regulation of Notch target E(spl)mÎ3 by Tramtrack69 and Putzig in Drosophila melanogaster
Hunter, Emily, "Transcriptional Regulation of Notch target E(spl)mγ by Tramtrack69 and Putzig in Drosophila melanogaster" (2012). Abstract The Notch pathway plays an important role during development by regulating whether a cell takes on a neuronal or non-neuronal cell fate in the peripheral nervous system of Drosophila melanogaster. When Notch signaling is present in a cell, the cell is preven...
متن کاملControl of Neural Daughter Cell Proliferation by Multi-level Notch/Su(H)/E(spl)-HLH Signaling
The Notch pathway controls proliferation during development and in adulthood, and is frequently affected in many disorders. However, the genetic sensitivity and multi-layered transcriptional properties of the Notch pathway has made its molecular decoding challenging. Here, we address the complexity of Notch signaling with respect to proliferation, using the developing Drosophila CNS as model. W...
متن کاملThe K box, a conserved 3' UTR sequence motif, negatively regulates accumulation of enhancer of split complex transcripts.
Cell-cell interactions mediated by the Notch receptor play an essential role in the development of the Drosophila adult peripheral nervous system (PNS). Transcriptional activation of multiple genes of the Enhancer of split Complex [E(spl)-C] is a key intracellular response to Notch receptor activity. Here we report that most E(spl)-C genes contain a novel sequence motif, the K box (TGTGAT), in ...
متن کاملFunctional relationships between Notch, Su(H) and the bHLH genes of the E(spl) complex: the E(spl) genes mediate only a subset of Notch activities during imaginal development.
The basic helix-loop-helix proteins of the Enhancer of split complex constitute a link between activation of the transmembrane receptor Notch and the resulting effects on transcription of downstream genes. The Suppressor of Hairless protein is the intermediary between Notch activation and expression of all Enhancer of split genes even though individual genes have distinct patterns of expression...
متن کاملDiscrete enhancer elements mediate selective responsiveness of enhancer of split complex genes to common transcriptional activators.
In Drosophila, genes of the Enhancer of split Complex [E(spl)-C] are important components of the Notch (N) cell-cell signaling pathway, which is utilized in imaginal discs to effect a series of cell fate decisions during adult peripheral nervous system development. Seven genes in the complex encode basic helix-loop-helix (bHLH) transcriptional repressors, while 4 others encode members of the Be...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2013